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ABSTRACT

General expressions are developed for the fluctuation in density
of electrons, ions, and charge in a plasma in thermal equilibrium in

an external magnetic field taking only Coulomb interaction into account.

The spectral distribution of the spatial Fourier components of these

fluctuations is derived from basic principles.

The fluctuations in electron density are discussed in some detail,
and spectra are computed under conditions which are thought to prevail

in the outer ionosphere. Frequency spectra of general validity are com-

puted for electron density fluctuations along the magnetic field. It
is shown by means of examples that the frequency spectra under ionospheric

conditions are not much influenced by the magnetic field except for den-
sity fluctuations fairly close to perpendicularity to the magnetic field.

Applications to incoherent backscattering are discussed, and it is
shown that, under suitable conditions, backscatter techniques can give

valuable information about electron density, temperature and consti-

tuents of the ionosphere.
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V Nuah of the current interest In the fluctuation of electron den-

sity in a plasma in thermodynmalc equilibrium stems from an original

suggestion by W. E. Gordon (18) that such fluctuations might be de-

tectable in the upper ionosphere in backscatter observations with

po@erftl radar systems. Gordon predicted the total scattering cross

section by adding up the cross sections of the individual electrons,

and he estimated the spectral broadening by ascribing to the scatter-

ing elements the thermal velocity of individual electrons.

hen Bowles observed this type of scattering (1958, 1959) it

appeared that the total power was of the right order of magnitude, but

that the spectrum was nowhere near as wide as expected. This has been

confirmed by recent observations by Pineo, etal, (1960). Subsequently

seveal authors have described theories to exlain this discrepay

and have * mp vith essentially similar rults (Pejer 1960, Salpeter

196Oa, 1960b, Dougherty and Farley 1960a, 1960b). The reason for the

narrow spectrum is the interaction between the electrons and the ions.

This interaction causes the spectral width to be that which would have

resulted if the electrons had had the mass of the ions and had been

completely free to move, very roughly stated. The theories referred

to show that the actual spectral distribution is considerably more

complicated if all the details are taken into account. Only Dougherty

and Parley have taken the effect of the geowAnetic field properly

into account.

The present work is concerned with the calculation of the electron

density fluctuations in the general case of ions with an arbitrary

number of positive charges and in the presence of an external sanetic

field. The effect of two-body collisions is taken approximately into

account by introducing a relaxation term in the Boltzmnn transfer

equation. The derivation does not depend on Nyquist's theorem as does

that of Dougherty and ParleI, but their result Is obtained in the case

of singly charged ions and no collisions. When the magnetic field is

neglected, but the multiple ion charge retained, the result of Salpeter

(l96Ob) is recovered.



The calculation of the total fluctuation is first carried out along

lines corresponding to those used by Pines and Bohm (1952). These

total fluctuations are shown to be independent of an external ma•etic

field and independent of two-body collis=oas. TI "variations of

the density fluctuations---or the spectrum---are then discussed by

means of the Boltmann equation. The solution of this equation fol-

lows very closely that of Bernstein (1958) who investigated waves

in a plasma in a magnetic field. We essentially have only to supply

the appropriate initial conditions to the solutions given by Bernstein.

It turns out that the fluctuations in ion density and charge density

and their spectral distribution my be obtained with very little extra

work. These results are therefore given in addition to the electron

density spectra. They are of no direct interest to the radar back-

scatter observations, but may be of use in other problems, such as

determining friction and diffusion coefficients of the Fokker-Planck

equation for the plasma (Hubbard 196o).

Numerical calculations of the spectral distribution of the elec-

tron density fluctuations are made for a set of parameters covering a

large range of temperatures, plasma frequencies and radar frequencies

appropriate to ionospheric conditions. The results are given as sets

of curves which can be conveniently used for interpreting backscatter

observations.

The extension of the theory to a larger number of ionic consti-

tuents is straightforward In principle, but is not carried out here.

II. RRIATI0S BIMM PLAMA FLUT MO1 AID SCATT3WING POPEJRTIM

Before we start discussing plasma properties we must relate the

scattered energy to the electron density fluctuations. For weak

scattering, i.e., when the Born approximation can be used, one ob-

tains for the scattering cross section per unit solid angle, per unit

incident power density and per unit scattering volume

a = v <I.(60I'>&V
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where a e is the scattering cross section per unit solid angle and per

unit incident power density of a single electron, and where I is the

difference between the wave vectors of the incident and the scattered

wave. Note that ae depends both on the polarization and the wave vec-

tor difference K. The quantity n(k) is defined as

n('k) = ~5d(-r) n(r) exp(ikr)

V

where n(r) is the number density of electrons. If, in addition, one

requires the power spectrum of the scattered energy, one mst study

the scattering cross section

12 = a. V<(2)
Se av

where w -is the difference of the angular frequency of the incident

wave and the scattered power under consideration. The quantity

<jn(t,a) 12>av is simply the power spectrum of the spatial Fourier con-

ponent of wave vector k. The two scattering cross sections are re-

lated through the equation

a= % (3)

Having now established the relationships between the scattering pro-

perties of the plasma and the density fluctuations we can turn to the

study of the latter.

III. TOTAL FLUCTUATIONS IN THE PLASMA

Assume that the plasma is neutral and that the average number

density of positive ions is N and the average number density of

electrons is no. The number of charges on the ions is Z = no/NO•

The densities may be expressed as

-3



NV

n V
and 0 (4)

Here V is the volume of a large periodicity cube with sides L, and

and r1 iare the positions of the ions and the electrons. The
charge density then becomes

prr) = e JZ(r)- n(r)] 5

and the spatial Fourier component becomes

*p(k) - e [Zli(k) - n(k)J (6)

with N('k) =1, ! d(') N('r) exp (i'k)

V

and with a similar expression for n(k). The wave vector k is given
by t - 2 10(1,A2,' 3 )/L where the I's are integers between -w and

The interaction between the various charged particles may now be

taken into account through an electric field i(r) which may also be

expanded within the periodicity cube V = L in a Fourier series.
By far the most important interaction in a nonrelativistic plasma is
through the Coulomb forces. This means that we let the velocity of

interaction become infinite so that the electric field may be derived

from a scalar potential which can be found from Poisson's equation.

We therefore obtain

p M) (8)

-4-



with Co = dielectric constant in vacuo. This will be a good approxi-

mation as long as the thermal energy of the electrons is considerably

smaller than the relativistic rest energy of the electrons, i.e.,

KT
«- <1.

mc

The total energy of the plasma, incidding the self energy of the indi-

vidual particles and their kinetic energies, then becomes
NV n0V

0 0

2W'9 mv J4i+ T m ~ 0 S 11(r* d(r)
2Vi=l i--i V

(9)

where M is the mass of an ion and m that of an electron. Using

Parceval's theorem, the last part of this may be expressed in term-
of Fourier components as follows:

k0 k

We2  1 I2 n - 12

0 k (10)

We note in particular that this expression will remain the same whether

there is an external magnetic field present or not, and it will not be

altered by the presence of neutral particles with which the ions and

the electrons way collide.

If Int) and n(r) were continuous functions of position, we

know from Information theory that in order to determine the Fourier

components up to t - 2K(Ai,1 2 ,1 3)/L the number of sampling points

required in space is very close to 8(J 1 Y 3 ) (Brillouin.1956). If,

therefore, 112 3 << noV and NoV, it means that many particles must

contribute to each sampled value. Let these sampled values be denoted

by i ... for ions and ni "'" n8(j 1 I2 ) for electrons.

-5•-



It is of interest to knov how these sampled values, or occupation
numbers, are related to the actual-discontinuous functions N(r) and

n +.Consider wave numbers Vwhere 1n1j, In2l-, and I n
are smaller than or equal to-1, '•;AdJ3Vrespectively. The nuier

of sampling points required along the three axes is then 21 + lp
222 + 1 and 223 ÷+ 1. Again, from information theory, it follows that
the sampled values (occupation numbers) my be obtained from N(r) and

n(l) by integration over the periodicity cube with the following
Veighting factor:

22i+1 / iniL1

"sin L-' tx.,.- (2--')f('r-'_•, ) . I~I (1

in1,m2,,m3  idl F, miL •
(eAi+l) sin L• -X i --

If ve denote the sampled values at r l2'3= L 1k P,

by (*" ) and '9), it can be shown that
ml m2 ,m3 .1,m2Jm3

i1i -11 -2 -13

•exp(- r, (12)
l,nz2 ,,n3 u',m 2,m3  (2

The complete set of sampled values (occupation numbers) is therefore

fully determined by the spectral components in .. with
nln 2 ,n3  ranging in magnitude from zet to11, follow33 12., 3' i follows

that

)2= 4 rZZNn ,n,n3 Imlm2 M ,3 ml'm•'2m3 1 •3 nl, n2, n3 1'- 3)13

(13)
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* 3.1 TIM DIBSI3TWION C TIM SAMPLE VALUE

We now consider the thermodynamic subsystem consisting of the oc-

cupation number and -- A - ~ ,8( ).£ AssumIngo~i. •a 11 ... 18(1,1,1,) --" 8'1'"pt~~ areo•) =,,.
that the velocities of the individual 1 2 ".rticle. are

statistically unrelated to these occupation numbers, we conclude that

the probability of one particular of the states coresponding to a

sequence of occupation numbers is given by a Gibbs distribution function:

The permutability of these states is given by

(NOV)'..no)
n .. .. .. .0 •BI ••(S 1A•3) "1 Bs(*lA=3)IIt.....18 J21 t ' ..... 41'03)

The probability density of a sequence of occupation numbers therefore

can be expressed as

z,(.•j.•. "(T°J no). exp(-W/KT) (16)

As long as the occupation numbers are fairly large we can use Stirling's

formula for the factorials. The distribution then simplifies to

p, ,, exp(-v/I0) . +ip +22.
ý00

(17)
From Eq. (13) we know how the occupation numbers may be expressed in

terms of Fourier components. We nust note, however, that Eq. (13) has

twice as many terms on the right-hand side as on the left because N(k)

has both real and Imginary parts. In changing the variables from oc-

cupation numbers to Fourier components we therefore count only direc-

tions of k pointing into one hemisphere provided we want to use hi,

"7-



NIirand N~ r a fbls --I"- yriablas. 3h this *ase N~ i adfi

st••d for the Iainary and the real parts of NO), with similar no-

tation .ftr the oleotrona, ecause the Fourier omponents awe linealy

eMated -to the oeacmblan uners (see q. .12), the jacobien of the trans-

formation is a constant. We therefore obtain for the Joint distribution

of the real and igainary parts of the Iburier components

4112 53

p(**NrjnriNi)ni)..) %, ex L2 2 (2x [Z2(N2 , .2) +
°n1n 2 - 3=

o-A 3

+ (nr2 + ni) 2Z(Nrn + Nini) + (ZN2+ n2 + n2))

D. is known as the Deby length (Spitzer 1•956).
We immidiate4 a" that this is a multidimensional probability

density of the 0susiean type. We note that the different Fourier compo-

nents enter through productw-of distribution functions for each. There-

fore, we conclude that the Fourier components corresponding to different

wave numbers are statistically 0~det In each of the 6e6 ntUWy

distribution functions we see that oenm the real and imaginary parts

corresponding to the srame wave nuober .are Ind od 0t We can there-

fore write down the expression for the distribution of the real partsof Ne ) a n(l) for one particular wave ntmber ese((ratel):

(Nr ar -- exy no 7ZDr

""e (ZNrnr 1(20)



Comparing this with the standard form of a two-dimensional Gaussian

distribution we conclude that

vn 2X2 + 1

3.22 >ICSSO OF 0ELT

ra, iav 2VZ 1+Z)

2 no n2XV_ + 1av iav 2I + (21() + z)
p

and <niNr>v <hN,>a =0

3.2 DISCUSSION OF RESULTS

The fluctuation in electron density becomes,

and the fluctuation in ion density

n +2X
2

<IN(c) 12 > 2P(23)
av + X2(l + z)

We note that when Z 1 the number density fluctuations in ion

and electron densities become identical. For small values of ItI the

fluctuations are 1/2 the value they would have been in a gas without

particle interaction. At large wave numbers the fluctuations become

identical with those in a gas with no particle interaction. The above

j results agree in every detail with those of Salpeter (196Oa).

Because we know the correlation between the motion of the ions

and the electrons we can also write down the expression for the, mean po-

tential energy associated with each wve number:

"-9-
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Ve 2le =%V 1•(1") 1:2 j 2- a I(-k1) -n(t)l2-

TXT 1 ( z) (24)1 + 2ý(l + Z)

This reduces to the result of Pines and Bohm (1952) if we put Z w O,

i.e., if we let the ions become smeared out to a uniform background

of positive charge.

We note that the above results are independent of the presence

of a magnetic field or two-body collisions (see Eq. 10). This has

only been shown here for the case of a plasma with Coulomb interaction.

Similar conclusions have been reached by Dougherty and Farley through

entirely different considerations.

IV. THE SPECTRAL DISTRIBUTION OF THE SPATIAL COMPONENTS

We next desire to know how the density fluctuations vary with time.

A relationship describing these time variations is given by the Boltzmann

transfer equation. This equation has been solved for the case of a plasm

in an external magnetic field (Gross 1951, Gordeyev 1952 and Bernstein

1958). It is, therefore, here necessary only to take over these re-

sults and apply them to our problem directly. We do have to supply

some sort of initial conditions to obtain the answer we want. As we

shall see, these can be found from the results of the previous section.

For completeness the method for solving the Boltzmann equation is

briefly outlined.

4.1 SOLUTION OF THE BOLTZMAiN EQUATION

The Boltzmann equation for the particle density in phase space

is given by:

4in t0 + + g [((2't) + r. ] C)coll
6tn

i - io-



Here j = - e/m for electrons and Ze/M for the ions. Assuming that

the deviations from a maxwellian velocity distribution are fairly small,

we put

, no(v) [1 + n(r~,,t)] (26)

with no(V) a maxwellian and n1  small compared with unity. Again,

introducing spatial Fourier transforms by

! nl •'•'t) nl(k,v,t) exp(-ikr) (27)

and Laplace transforms through

n, (k, v s) = l(I,_v"t) exp(-st) dt (28)

0

the linearized equation becomes

snl(k, v,s) -n (kv) -im1 1 (kyv.) + Ek * P x ÷
-•vn[nlo~v, TVs ••Sn l-** o-n-( -)1

Vn1(tvs) (29)

The quantity n1 (!,') is the initial value obtained by putting t - 0

in nl(t,v,t). In the above, the collisions have been taken into ac-

count by means of a relaxation term. The quantity V is an effective

collision frequency. By combining the relaxation term with the first

term on the left-hand side we obtain

sn,(k,v,s) -o (s + v) nl(k,v,s) = s'nl(I,>,s)

We can therefore neglect the collisions in the calculations provided

we remember that wherever s appears explicitly it actually stands

for the sum of s and the collision frequency.

To solve the differential equation in v one may introduce cylin-

drical coordinates with axis along the magnetic field and with propagation

- 11 -



vector in the 1-3 plane, as shown in Fig. 1. With these ir coordinates
Eq. (29) becomes

S-,L is - iX(U cooe - + suin 0 cou 0)] n,.=

64 1.-,) (30)

The integration of Eq. (30), which has been performed by Bernstein (1958),

is briefly outlined in Appendix A.

3

W 211

FIG. 1. COORUIiATE SYSTEM FOR SOLVING EQ. (29)

The solution is:

n k v',s), 0- 1(1,s) -n ¢• ,•,B . 0 ,

exp~ [(s - iku co e)(0-0') - i-v sin e (sin 0-sin 0')]

(31)

-12-



If this is written out explicitly for electrons and ions, one obtains

n,- ( .G.(0,09- n2.do

CO no

(32)

and

121n)
-00 0

(33)

where the integrating factors Ge and Gi follow from Eq. (31).

We next remove fluctuations in velocity space by averaging over

all velocities by means of the maxwellian distribution, that is, we

form

n(l,s) = f hoc) nn, a(l)
0 1

N(k,s) = f N 0( N1(k)ý,s) d(l) (34)

This leads to the equations

n(t,s) = Yr(t,s) - no2X2R (ZW(s) - n(ts))
n n0  pC

N(ts) = (Y•,s) + L.2X2R (ZN(Z,s) - n(ts))

(35)

The complete expressions for Y and R introduced both for ions and

for electrons are given in Appendix B. Solving the set of equations

(35) one obtains Y(1 - L 2 z2 R) - Y.L 2X2ZR

n(t,s) n. o ,p o p (36)

1 - .L 2 2 (Ee +Z2 Ri)
no p

- 13 -



Yj (i - T 20,B) - Y, 2i ZR
N(IS) o 0o (37)

o

From the above two equations the variation of electron density and ion
density with time can be found by taking the inverse Laplace transform.
Only the time variation of the electron density will be computed in de-
tail here, as the procedure for dealing with the ion density variations

is similar.

For the electron density the inverse transform becomes
+ioo+E

n( ,t) = 1 5 n(k,s) exp(st) ds (38)

The electron density at time t can therefore be found, provided the
initial conditions at time t = 0 are known. Because of the statis-
tical nature of the problem, however, we cannot fix the initial condi-
tions. We must therefore resort to a statistical description. Hence
we form the following expression

+iO*+E

--2 <n*(,O) n(k,s)>avexp(st) ds

iC.O+E

(39)

The spectrum is the Fourier transform of an autocorrelation function,
defined by (Landau and Lifshitz 1958)

1 -nkt) + n(k,O) n*(k, t)>av (4)

2

Because of the symmetry properties of n(k,t) this turns out to be
equal to

2R•*(I,O)n(k,t)>ý.v

- 14 -
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By means of this expression and by using the Wiener-Khinchine theorem,
we conclude that the spectral distribution is given by

&V it Re(s)46 k av

Equation (41) is the formal solution of our problem. In order to be
able to, compute the actual spectra we must study in some detail the

function <n*(k,O)n(kS)>av which is by

<n*('k, 0) Y,> (1 - -L 2X2 Z2Rj)- B(1O Yn~v- 2X2ZR
av n p ne y

0 0

1-L2X2 (Re. + Z2ýi)

(42)

In particular, the expressions for the averages contain terms of the

form

<n*(koln kv)> av

and <n*(fjo)NC•,1)> v (43)

In the previous section we assumed that the spatial density fluctuations

are independent of the velocities of the individual particles. As long
as this is true, we conclude that the expressions (43) are both indepen-

dent of velocity. Using Eqs. (21) and (22) we obtain

1 <In()I>_. 1+2X2Z

"=*¢•'°?¢••)av = 0  av- -.,"'V 1+ -,- (l.z)
p

S- 15 -
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Substitution of these into expressions (42) and (41), together with

the results of Appendix B we finally obtain for the spectrum

no,) = Im(-F,)II+24Z, i2+4X-ZIm("Fi)IF,1
2

av 71'V i+2ýx(F6 '+ZF) '

(45)
The function F, as shown in Appendix B, is defined in the following

manner for electrons:

F, ji4 + ex lysn9(-o ) + §~Y Cos 9] dy
xo

Here we have defined the quantities X, X, and Ae by

2 n 2

k
V

and A,,

ne is the gyrofrequency of the electrons, eB/m, and V. is the effec-

tive collision frequency of the electrons. See Eq. (29) and comments.

The expression for Fi may be obtained by substituting KX for X

and ,i*Xe for X. in the expression for F.. /C is the square root

of the ratio of ion and electron masses. One must also substitute

the appropriate collision frequency for ions.

The corresponding expression for the ion density fluctuations

become

i1 (-ýjl F.l 12
no Im(-Fi1)1+2X 2P',1 + m(-F,)4x z~i2

Sav l+2X2(F.+ZFI)

(46)

and for the charge density variations

S16



<1p(kQI 2>av - n.0e2 Im(-F) + z Im(-Fi)
AIC 1 + 24 (F, +zF )1)2 (1)

In the next section we go on to discuss the properties of the
electron density spectra under conditions of interest in ionospheric

applications.

V. DETEMUINATION OF ELECTRON DENSITY SPECTRA

Before starting to discuss the shape of the spectra of electron
density fluctuations for application to scattering in the ionosphere,

we must determine from ionospheric data the ranges of the various param-

eters. It turns out that the spectra are quite straightforward to com-
pute when I is parallel to the magnetic field. This longitudinal

v4 case is identical with the nonmagnetic case. When I is no longer
parallel to the magnetic field, it is still possible to work out exact

expressions for both Fe and F but these involve slowly convering

infinite sums with terms proportional to Bessel functions of imaginary
arguments and are, in general, difficult to handle. However, in the
limiting cases of radius of gyration of the charged particle small or

large in comparison with k'l, more tractable approximate expressions
can be used. In the ionosphere, within a fairly wide radio frequency
range, the electrons will have a small radius of gyration, and the ions

a large radius- df gyration, compared with k'1.

For strictly transverse propagation the spectrum cannot be worked

out without retaining some sort of damping. As the extent of this damp-
ing is not known, the spectra can be discusged only qualitatively in

this case.

5.1 RANGE OF THE PARAMETERS

We shall assume that over the height range of interest at present,
say from about 300 km to roughly 2000 kmi the temperature is of the

order of 1000° to 20000 K (Chapman, 1960). In the actual calculations

- 17 -



of the spectra we shall consider only the case of thermal equilibrium

between ions and electrons. As a representative value for the gyro-

frequency of the electrons we shall take 1 Mc/s. The type of ions

present is not at all well known. At greater heights there is some

reason to believe that protons may predominate, whereas at lower heights

oxygen, nitrogen and others may be p'resent. To get some insight into

F the effect of the mass of the ions, spectra are given both for protons

and for oxygen ions.

The plasma frequencies are taken to range from 0.5 to 5.0 Mc/s

and the radio frequencies are assumed to lie in the range from 50 to

3000 Mc/s. One then obtains:

Range of X2= (?),2 -101: - 710p k(

9 Range of 4 3 .1 2

Only singly ionized ions will be considered. The values for

K = (M/m) are:

Hydrogen : K = 43
Oxygen : K = 172

5.2 LONGITUDINAL CASE

This case is obtained by putting e 0 in the integrals for

F. and Fi . First we would like to know whether collisions have to

be taken into account. By studying the integrals we conclude that col-

lisions are unimportant provided:

Xe Ae = Xce << 1

and

X.A. =X 1<<I

These conditions amount to assuming that the mean free paths of the

electrons and the ions are larger than the scale of the spatial Fourier

18 -



component under consideration, i.e., larger than k"1. Since the mean

free path at 200 km is of the order of several hundred metres, and be-

cause the wavelength of the radio waves will be at most a few metres,

we conclude that collisions are unimportant. With no collisions we find:

Re(F.) = 1 - 2X exp(-X2 ) •exp(j)do

W Im(-Fe). - x exp(-x 2 ) (48)

Also we--ote -that- -i ;(-X) = F,(/cX i.
In Eq. (145) the quantity 7 X appears as a factor and is taken

outside the fraction and combined with the first factor. Dividing

Eq. (45) by the resulting new first factor we obtain

.v<ic,)2 expC-12)11÷2XF J2 +X4 ex p-i 2X2)l I~e1

H() I +Ii< c)1

n 0 M >&V 1+2X,2 (Fe +Fi)1 2

p

(49)
The right-hand side of this was computed on an electronic computer for

values of X ranging from 300 to 0.03 for c = 43 and ic = 172. The

results are shown in Fig. 2.

Let us try to interpret these curves in as simple physical terms
as possible. Consider density variations of one scale k" only. The

time variations of the density fluctuation at this scale may be thought

of as a superposition of highly damped, plane longitudinal electron

waves with a wide range of different phase velocities. These waves are
excited through interaction with the microscopic motion in the plasma.

For large scales kI the electrons are tied to the ion motion and the

spectrum is identical to that of the ion motion. This case is repre-

sented in Fig. 2 by the curve for X = 300. As the scale k"1 is de-
creasing and becomes of the order of the Debye length the electron mo-

tion is no longer completely tied to the motion of the ions. In fact,

the fast electron waves are actually becoming independent of the ion

motion before the slow ones. This explains why, in the transition re-

gion, the spectral density increases with velocity in the velocity range

- 19 -
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where the fast electron waves are able to move independently of the ion

motion. In particular, the pronounced dip in the curves for = 1.0

and 3.0 can be explained this way. When X becomes small the spectrum

tends toward a Gaussian, as it should when the electrons become completely

free to move.

For large X there is a very sharp peak in the curves for X f Xp

This corresponds to the familiar electrostatic waves at the plasma fre-

quency. The contribution to the total fluctuation from this peak is,

in general, negligible.

It should also be noted that the widths of the curves for large
-1X and for small X are in the ratio K•

p p

5.3 GENERAL CASE

Useful approximate expressions for FP and F2  may be developed

in the general case of e ý 0. Let us assume that collisions are un-

important and that we avoid the case of strictly transverse propagation.

Then the integral in Fe and ..7 can be solved by expanding
e 2

Ssin2 9

exp - -coorn

in a Fourier series and integrating term by term.

The expressions for the real and imaginary parts of Fe then become

Re(F.) 1 2X sN n 1 2 2

coo ~ ~ (cox-•X.))2

coo 2 e4W co

X s , ine' (asin,ýO
SOcos exp -(X-nX

(50)
where In is the Bessel function of imaginary argument of order n.
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dealBecause these sums are rather difficult to handle we shall here
deal only with approximations for large and small radii of gyration.

In ionospheric applications, the former case applies to the ions and

the latter to the electrons, for a fairly large range of wave vectors k.

When the radius of gyration is small, Xe > 1 and only the zeroth

order terms in the sums above need be considered as long as X, also

exceeds X. Hence:

X
cos e

1 (oRe~ T1- "s 9Cos
0

x X 2
cos6 exp [- (Ces-e)

Note that these equations could have been obtained from the longitudinal

case by replacing X by X/cos e.
When the radius of gyration is large an approximation can best

be obtained from the original expression for F. rather than from

Eqs. (50). In this case Xe < 1, and the expression

sin 2 e

exp [2X- (-cos

will be appreciably different from zero only when y 2En, provided

sin e > x. The contributions around y = 2nn are obtained by expand-

ing 1 - cos y to second order, i.e., by putting

-Cos y ~ (y - 27rn) 2

The expressions for the real and imaginary parts of F, specialized

for the ions through the substitution (see p. 16)

X -o /CX

X "* •IX

become
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Re(F,) ' 1 - 2 KX exp [- 22 •]) d% + exp ['()2 sin2 e C08291

sin %, 2 sin 2e

X e

Im(-F) cX exp + 2 ei9c )

cos (2nT 2 sin92 e X (52)

The effect of the magnetic field is to modulate the functions obtained

in the longitudinal case. It is only when e is fairly close to 900

that that this modulation becomes appreciable.

Because of the, number of praeters involved it is not possible

to compute sets of curves valid for as many different cases as for the

nonmagnetic case of Fig. 2. In order to discuss the effect of the

magnetic field on the spectral distribution, we therefore choose one

particular set of parameters and study the change of the spectrum
with angle e.

We choose parameters:

Xe = 10

Xp = 30

K = 43 (hydrogen)

Let us discuss the significance of this choice. As mentioned above,
the electron gyro-frequency is taken as 1 Mc/s. Because X p/X = 3

this means that the plasma frequency is 3 Mc/s, which is at least

of the right order of magnitude above the peak of the F-layer of the

ionosphere. If the temperature is 10000 K, then (--f)' = 5.7 . 10-6.

With Xe 10 in a backscatter experiment the radio wavelength would

correspond to 3.5 meters, which is typical of the wavelengths used at

present.

- 23 -



|2

10 _ _ -

-14(X) j~-

xe 10
Xp-30
K-43

11--~4 -5

I0"0 __"_:_0

S -- --•

-5
i 2

,0 X0" I0"

* X'--*

3 E L O43

X 10

-a-



Substituting Eqs. (51) and (52) into Eq. (45) and normalizing as

in the longitudinal case (Eq. 49) we can again compute

H X v.M C2jKT½ < In (, a))I2> a
( m-

0

against X on an electronic computer. The computation was carried

through for e = 80°, 850 and 880, and the "ionic" parts of the spectra

are shown in Fig. 3. The longitudinal case for X = 30 is shown

dotted.

We see that as e approaches 900 the spectrum develops toward a

line spectrum with peaks at the gyro-frequencies of the ions, and. peaks

at all the harmonics of this frequency. Because of the computer time

required the range of the power density was limited. The frequency

range was also reduced, for the same reason, to the range of X where

the spectrum is essentially of ionic nature.

"The spectrum for e = 850 is displayed on a linear-linear scale

in Fig. 4.

20

N(X) Pf 0 k4

0 .0. .0.

x

FIG. 4. PLOT OF H(X) AGAINST X ON A LINEAR SCALE.
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VI. DISCUSSION AND CONCLUSION

The present work has shown how the spatial Fourier components of

electron density fluctuations and their spectral distribution may be

computed for a plasma in thermal equilibrium in an external magnetic

field when Coulomb interaction is taken into account.

In the ionosphere we will be concerned with only Z = 1. Thus,

if the "scale" k"1 is larger than the Debye length, the total fluctua-

tion is found to be half that found in the absence of interactions.

If the "scale" is smaller than the Debye length, the total fluctuation

is not influenced by interactions. The total fluctuation, and hence

the total scattered power, is independent of the presence of a stav;ic

magnetic field.

For physical conditions which are believed to prevail in the iono-

sphere, and for wavelengths (scales) of the order of a few meters, the

spectral distribution is not influenced by the presence of a m"lnetic

field unless the wave vector k is nearly perpendicular to the mag-

netic field. As k approaches perpendicularity, sharp resonance

peaks are developing rapidly round the ionic gyro-frequency and multiples

thereof.

It therefore appears that it will be possible to study the ionic

constituents in the ionosphere by carefully designed radio-wave-scatter

experiments. The temperature can also be found by studying the spectral

width, either of the "ionic" spectrum or of the "electronic" spectrum.

The electron density may be found from the total scattered power.

The possibility of actually detecting the peaks at the ionic

gyro-frequencies depends on the frequency resolution available. In

normal backscatter observations with relatively short pulses there is a

chance that the details may be washed out because of the width of the

spectrum of-the transmitted wave. It therefore appears that some sort

of bistatic continuous-wave experiment ought to be looked into and

-thoroughly discussed.

When several ionic components are present the above theory can be

extended without any difficulties in principle, but the work becomes more

laborious and is omitted here.
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I

APPEUDIX A

The solution of the hanopneous part of Eq. (30) is:

C0 (wu) = exp - [(s - iku coo e)0 - ikw sin sin 0] (Al)

Instead: of Co(w,U) we substitute a function C(w,u,0) and try to solve

the inhomogeneous equation. It is then found that:

C(w,u,0) . f e [_ -1 s -iku coo 0)01 iki sin 9 sin-
VB fixed 4B

limit

0 -nE . n (k,v do- (A2)

The full solution therefoze becomes:

n1 (w'u,0) - - J exp [(a - iku cos e)(0 -0) .)- .w sin e
;ALB fixed

limit

(sin 0-sin 01) ;3 E(k,,s) - n (,')3 do' (A3)

where v' is obtained from v by putting 0 - 0. Because physical con-

siderations require that the function be single-valued, we must construct

a solution which is periodic in 0. The only possible solution is then

the one presented in Eq. (31).
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APPUMDIX B

From Eqs. (32), (33) and (35) we see that:

G n, (-* n 1+. # -)o
Ye - 0 k' v(,')o•n1••)d(v)"

V
(Bl)

Re- k-SG.(0.,0 )no0()d(')do,

V -

and:

V V
(B2)

R - kVGj(0,0,)N0 o(V)d(V)d0'

V -

The expressions for R may be integrated imediately, but not so those

for Y because of the stochastic nature of nl(k,v') and N 1(k,'). Before

integrating we must form the required averages <n*(k)Yav andSav
<n*(k)Yi>av and make use of Eqs. (44). The following results are then

obtained:

<n*(k)Y,> av = V 1i+ 2X2p(l + Z) Ge(O.,01)n°0(v d v~d•

1 2X 2z c
<n*(k')Y>av +3Z Gj(0,0')no(v)d(V)d0'

V l+2X-(1+Z)"

Vi1 + 2X2 1*z
p V (B4)

Bernstein (1958) has shown how this type of integral can be evaluated.

Because the procedure is fairly straight forward the details are omitted
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here. The integral in (B3) becomes:
dr

" , exp [ . - [sin2 e(l - cosý + ½ cos2o]

The integral in (B4) is of exactly the same form, we have only to sub-

stitute parameters applying to ions instead of electrons. The integral,

which we will term a Gordeyev integral, will now be denoted by g(e,s/D),

and we put indices e or i to indicate whether it applies to electrons

or ions.

In terms of this integral the expressions (B3) and (B.) become:

nfv 1+ + z)

<n*(k)y.>av 0 o p (Bp)

Oa v 1 2e(l +

The integrals occurring in Re and R i may also be expressed in terms of

the Gordeyev integral:

Re =in " ge ) - inF (OP ) (B7)

SR i ° --- gi ,- -°2 (BB)z 2i i ()

Our final formulae (45), (46) and (47) follow from these by simple

substitution.
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